

A Comparison of Three and Four State Economic Models for Cost-Effectiveness Analysis in Oncology

Devin Incerti^{1,2}, Jeroen Jansen^{1,2}

¹Innovation and Value Initiative

² Precision Health Economics

Overview

- > Cost-effectiveness analyses in oncology are typically based on model structures with 3 health states (stable disease, progressed disease, and death)
- > But 3-state models do not explicitly incorporate 2L treatments
- > We developed a model for NSCLC (the IVI-NSCLC model) that can simulate different model structures in a multi-state framework
 - > 3-state models
 - > 4-state models explicitly incorporating 2L treatments
- > Differences in cost-effectiveness results between the 3- and 4-state models were compared

3-state model

S1= Progression-free (stable disease) with 1L treatment

 $\it P_1=$ Progression with 1L treatment, captures the survival with 2L and 2L+ without making a distinction between progression free and progression phases

D= Dead

 $h^{S_1P_1}(u)$ = hazard for transitioning from progression-free to progression with 1L treatment at time u

 $h^{S_1D}(u)$ = hazard for transitioning from progression-free to dead with 1L treatment at time u

 $h^{P_1D}(u)$ = hazard for transitioning from progression on 1L to dead at time u

IVI *

4-state model

 S_1 = Progression-free (stable disease) with 1L treatment

 P_1 = Progression with 1L treatment

 S_2 = Progression-free (stable disease) with 2L treatment

 P_2 = Progression with 2L treatment, captures the survival with 2L+ without making a distinction between a progression free and progression phase

D= Dead

 $h^{S_1P_1}(u)$ = hazard for transitioning from progression-free to progression with 1L treatment at time u

 $h^{S_1D}(u)$ = hazard for transitioning from progression-free to dead with 1L treatment at time u

 $h^{S_2P_2}(u)$ = hazard for transitioning from progression-free to progression with 2L treatment at time u

 $h^{S_2D}(u)$ = hazard for transitioning from progression-free to dead with 2L treatment at time u

 $h^{P_2D}(u)$ = hazard for transitioning from progression on 2L to dead at time u

Parameterized using multi-state network meta-analysis conducted separately by line (1L, 2L)

 $S_{ik}(u)$ = progression -free (stable disease) in study i, treatment arm k at time u

 $P_{ik}(u)$ = progressed disease in study i, treatment arm k at time u

 $D_{ik}(u)$ = dead in study i, in treatment arm k at time u

 $h_{ik}^{SP}(u)$ = hazard rate for disease progression in study i, in treatment arm k at time u

 $h_{ik}^{PD}(u)$ = hazard rate for dying post-progression in study i, in treatment arm k at time u

 $h_{ik}^{SD}(u)$ = hazard rate for dying pre-progression in study i, in treatment arm k at time u

IVI 🛠

Incorporation of treatment effect parameters

IVI 🛠

Treatment costs by health state

Example analysis

¹ 3-state model: 1L evidence for efficacy; 1L and 2L treatment costs

- ² 4-state model: 1Land 2L evidence for efficacy; 1L, 2L, and 2L+ treatment costs
- ³ PBDC = platinum-based doublet chemotherapy

IVI *

Results: efficacy

10

Results: costs

IVI *

Results: cost-effectiveness

	3-state model		4-state model	
	Gefitinib sequence	Osimertinib sequence	Gefitinib sequence	Osimertinib sequence
Incremental QALYs	-	0.82 (0.25, 1.93)	-	0.60 (-0.01, 1.66)
Incremental costs (\$)	-	151,009 (27,471, 387,111)	-	131,360 (-2,212, 372,498)
ICER (\$ per QALY)	-	184,720	-	220,255

Note: Estimates discounted at 3%. The gefitinib sequence is the reference treatment strategy.

12

Conclusion

- 2L treatments can have a significant impact on the efficacy of treatment sequences as well as treatment costs
- The differences in efficacy can have impacts on non-treatment related costs such as inpatient costs
- In general, a 4-state model will differ the most from a 3-state model when:
 - 2L and 2L+ treatments differ across the competing treatment sequences
 - 2L and 2L+ treatment costs differ
 - Disease progression is correlated with higher non-treatment costs