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Background 

• Decision models are complex mathematical models that often contain large 
numbers of parameters and complex relationships between inputs and outputs

• Complexity often result in models that are not transparent, efficient, or flexible

• While it has argued that this is caused, in part, by choice of software (e.g., Excel vs 
R), software is not the only culprit

• Good code is just as important---if not more so--- than the choice of software

• Following software engineering best practices can improve the quality of models 
and enhance their credibility



Attributes of good code*

*Attributes listed here are non-exhaustive 

Transparency

Reliability

Efficiency

Extensibility Extensible code is easily adapted to allow for new capabilities or 
functionality

Efficient code runs fast enough and is programmed quickly 
enough to achieve its intended purpose

Reliable code produces expected output without errors

Transparent code is easily understood and reproducible



Example

Decision problem

• 5 competing treatment 
strategies

• 10 representative patients (vary 
by age and sex)

• Decision framework: CEA

Decision model

• Markov cohort model
• Probabilistic sensitivity analysis
• 3 health states (sick, sicker, 

death)
• Yearly model cycles
• 20 year time horizon

Sick Sicker Death
Sick C

Sicker 0 C

Death 0 0 1

Multinomial logistic 
regression 

Treatment effects for 
treatment strategies 
are (log) odds ratios

Additional covariates Z  
(age, sex)

Rate modeled as 
function of age 
and sex

Complement = 1 – Pr(sick) – Pr(death)



Lesson 1: plan ahead 

Markov modeling steps

1. Set treatment strategies and 
patients (input data)

2. Sample parameters for PSA
3. Simulate state probabilities
4. Simulate costs & QALYs
5. Perform CEA

a. ICER
b. PSA

Sample Strategy Patient Cycle Pr(sick) Pr(sicker) Pr(death)

1 1 1 0 .9 .08 .01

1 1 1 1 .85 .13 .02

State probabilities
Sample Strategy Patient Costs QALYs

1 1 1 50,000 7

1 1 1 45,000 6.5

Expected values (costs and QALYs)

Modeling pipeline

input_data <- make_input_data()
params <- get_params()
stprobs <- sim_stateprobs(input_data, params)
ev <- sim_ev(stprobs, input_data, params)
icer_out <- icer(ev)
psa_out <- psa(ev)

Start by thinking about the output you will need/want to answer your decision problem

We can then think about the steps/functions needed to produce that output 



Lesson 1 cont’d: convenient model inputs

A convenient way to model multiple treatment strategies (n = 5) and patients (n = 10) is to 
create a single data frame (the “input data”)

In a PSA, the parameters are drawn from suitable probability distributions:

Multinomial logit coefficients for sickà sicker transition (same for sick -> death)

Coefficients for rate parameter of sickerà death transition Recall that we need simulation results for every 
strategy, patient, and PSA sample.  An 
important consideration is whether to draw the 
parameters once at each iteration (as shown 
here) or to draw all at once (i.e., to vectorize)



Lesson 2: choose a style guide and stick to it 

state_probs <- sim.StateProbs()

expectedValues <- expected_values_sim()

ICER <- icer()

psa_out <- psa()

stateprobs <- sim_stateprobs()

expected_values <- sim_expected_values()

icer_out <- icer()

psa_out <- psa()

Inconsistent naming 
conventions for 
objects

Let’s start with some ”bad” code:

Some better code:

Inconsistent naming 
conventions for 
functions

Usually better for functions 
to be verbs

But don’t need a verb if 
function computes well 
known noun

A ”dot” is confusing because its unclear 
if the function is an S3 method



Lesson 3: write modular code

sim_stateprobs <- function(input_data, params, 
n_samples, n_cycles, x0) {

for (s in 1:n_samples) { 
for (i in 1:nrow(input_data)) {

# A bunch of code to sample the parameters here
params_sample <- list()
for  (j in 1:n_params) {
k <- ncol(params[[j]]$mean[j])
params_sample[[j]] <- rnorm(k, params[[j]]$mean, 

params[[j]]$sd)}
}

# A lot of code to get transition probability matrix
# Predict probabilities with multinomial logit
# Predict probabilities with exponential model

# More code to simulate the Markov chain
for (t in 1:n_cycles) {
x[t + 1, ] <- x[t, ] %*% p

}
} # End loop of input data

} # End loop over treatment strategies

vs

sim_stateprobs1 <- function(input_data, params, 
n_cycles, x0) {

params_sample <- sample_params(n = 1, params) 
tpmat <- tpmatrix(input_data, params_sample)
sim_markov_chain(x0, p = tpmat, n_cycles

}

sim_stateprobs <- function(input_data, params, 
n_samples, n_cycles, x0) {

for (s in 1:n_samples) { 
for (i in 1:nrow(input_data)) {
sim_stateprobs1(input_data, params, n_cycles, x0)

}
}

}

• Why?
- Can read the code almost like reading the English language (transparency)
- Easier to test functions and identify source of bugs (reliability)
- Easier to refactor when adding new features (extensibility)



Lesson 3 cont’d: modularizing the construction of the 
transition probability matrices

tpmatrix <- function(input_data, params)
rbind(

tp_sick(input_data, params),
tp_sicker(input_data, params),
c(0, 0, 1) # Death is an absorbing state

)
)

tp_sick <- function(input_data, params) {
beta <- params[c("sick_sicker", "sick_death")]
x <- make_x(input_data, beta[[1]])
mlogit_probs(x, beta)

}

tp_sicker <- function(input_data, params) {
beta <- params[["sicker_death"]]
x <- make_x(input_data, beta)
rate <- exp(x %*% t(beta))
prob_death <- 1 - exp(-rate)
c(sick = 0, sicker = 1 - prob_death, death = prob_death)

}

make_x <- function(input_data, params) {
input_data[, "intercept"] <- 1 # Add intercept
as.matrix(input_data[, colnames(params)])

}

mlogit_probs <- function(x, beta) {

# General code to predict probabilities given 
# coefficients from a multinomial regression

}

Transition probabilities from sick state Transition probabilities from sicker state

Transition probabilities from sick state 
predicted from multinomial logit model

Create “input matrix” by selecting columns of 
input data corresponding to parameters 



Lesson 4: vectorize R code when feasible

• In our toy model with 5 treatment strategies, 10 patients, 20 (annual) model cycles, 
and 1,000 PSA samples, there are 5 * 10 * 20 * 1,000 =  1,000,000 iterations

• Looping many times in pure R can be slow; the prior code runs in ~45 seconds

• We can speed up the code considerably (~2 seconds) by vectorizing (looping with 
compiled code) with hesim

Using hesim::tpmatrix()to precompute transition probabilities for every combination of ID variables

The GitHub repo for this presentation shows how the non-vectorized 
code can be slightly tweaked to create transition matrices in a 
vectorized manner. hesim will then implement a Markov chain 
(written in C++) for each row in the table above



Concluding thoughts

• R is a good software tool for decision modeling but its important to following good 
software practices

• If done carefully, it can result in very transparent modeling; however, writing 
transparent code is a lot of extra effort and neither academia, industry, or consulting 
provide strong incentives for doing this

• There is a lot of potential to leverage open-source packages to make work more 
efficient and less error prone; we should work together more

• We aren’t software engineers, but we should try to write code a little more like 
them


