Decision modeling with R: lessons
learned from the development of hesim

Devin Incerti | Genentech
July 1, 2021 | R for HTA Showcase



Background

e Decision models are complex mathematical models that often contain large
numbers of parameters and complex relationships between inputs and outputs

e Complexity often result in models that are not transparent, efficient, or flexible

e While it has argued that this is caused, in part, by choice of software (e.g., Excel vs
R), software is not the only culprit

e Good code is just as important---if not more so--- than the choice of software

e Following software engineering best practices can improve the quality of models
and enhance their credibility



Attributes of good code”

< Transparency <%> Transparent code is easily understood and reproducible

< Reliability <@ Reliable code produces expected output without errors

<®> Efficient code runs fast enough and is programmed quickly

Efficienc
< Y enough to achieve its intended purpose

Extensible code is easily adapted to allow for new capabilities or

<Extensibi|ity <§§ functionality

*Attributes listed here are non-exhaustive



Example

Decision problem Decision model

5 competing treatment Markov cohort model
strategies * Probabilistic sensitivity analysis
* 10 representative patients (vary * 3 health states (sick, sicker,
by age and sex) death)
* Decision framework: CEA * Yearly model cycles

e 20 year time horizon

Treatment effects for
treatment strategies

Complement = 1 — Pr(sick) — Pr(death) are (log) odds ratios

regression

Additional covariates Z
(age, sex)

e 2 eAr3+Z8;
Ja- Zi:z eYsA+Zdy 1+ 22 eYkA+Z5y Rate modeled as
function of age
1 — exp[ — (k] and sex




Lesson 1: plan ahead

Start by thinking about the output you will need/want to answer your decision problem

State probabilities Expected values (costs and QALYSs)
Sample  Strategy  Patient  Cycle  Pr(sik)  Prisicker) Pr(death) sample  Strategy  Patient  Costs  QALYs
1 1 1 0 9 .08 .01 1 1 1 50,000 7
1 1 1 1 .85 .13 .02 1 1 1 45,000 6.5

We can then think about the steps/functions needed to produce that output

Markov modeling steps Modeling pipeline

Set treatment strategles and input_data <- make input data()

patients (input data) params <- get params()

Sample parameters for PSA ‘ stprobs <- sim_stateprobs(input_data, params)
Simulate state probabilities ev <- sim_ev(stprobs, input_data, params)

icer_out <- icer(ev)

Simulate costs & QALYs psa_out <- psa(ev)

Perform CEA
a. ICER
b. PSA

ukewnN



Lesson 1 cont’d: convenient model inputs

A convenient way to model multiple treatment strategies (n = 5) and patients (n = 10) is to
create a single data frame (the “input data”)

strategy_id patient_id age female strategy2 strategy3 strategy4 strategy5
1 1 1 65.18746 1 0 0 0 0
2 1 2 63.15747 1 0 0 0 0
49 5 9 48.73327 1 0 0 0 1
50 5 10 62.43522 0 0 0 0 1

In a PSA, the parameters are drawn from suitable probability distributions:

Multinomial logit coefficients for sick = sicker transition (same for sick -> death)

strategy?2 strategy3 strategy4 strategy5 intercept age female
-0.1987610309 -0.5188277554 -0.3727531176 -0.0015692633 -1.6293260952 ©.0007976859 -0.1043042118

Coefficients for rate parameter of sicker = death transition Recall that we need simulation results for every
strategy, patient, and PSA sample. An
A ‘i_nter‘ceptA age  female important consideration is whether to draw the
-1.159677128 ©0.004135311 -0.100374964 parameters once at each iteration (as shown

here) or to draw all at once (i.e., to vectorize)




Lesson 2: choose a style guide and stick to it

Let’s start with some “bad” code:

A “dot” is confusing because its unclear

Inconsistent naming
conventions for
objects

Some better code:

if the function is an S3 method

Usually better for functions
to be verbs
state_probs <- sim(|StateProbs()

expectedValues <- expected_values_sim() Inconsistent naming

conventions for

ICER <- icer() But don’t need a verb if functions
function computes well

known noun
psa_out <- psa() —

stateprobs <- sim_stateprobs()

expected_values <- sim_expected values()
icer_out <- icer()

psa_out <- psa()



Lesson 3: write modular code

sim_stateprobs <- function(input_data, params,
n_samples, n_cycles, x0) {
for (s in 1:n_samples) {

i <- functi i t_dat
for (i in 1:nrow(input_data)) { sim_stateprobsl unction(input_data, params,

n_cycles, x0) {
params_sample <- sample_params(n = 1, params)
tpmat <- tpmatrix(input_data, params_sample)
sim_markov_chain(x@, p = tpmat, n_cycles

# A bunch of code to sample the parameters here
params_sample <- list()
for (j in 1:n_params) {

k <- ncol(params[[j]]$mean[j]) }
params_sample[[j]] <- rnorm(k, params[[j]]$mean,
params[[j]]$sd)}
}
VS
# A lot of code to get transition probability matrix sim_stateprobs <- function(input_data, params,
# Predict probabilities with multinomial logit n_samples, n_cycles, x0) {
# Predict probabilities with exponential model for (s in 1:n_samples) {
for (i in 1:nrow(input_data)) {
# More code to simulate the Markov chain sim_stateprobsi(input_data, params, n_cycles, x0)
for (t in 1:n_cycles) { }
x[t + 1, ] <- x[t, ] %*% p }
} }

# End loop of input data
p p
} # End loop over treatment strategies

e Why?
- Can read the code almost like reading the English language (transparency)

- Easier to test functions and identify source of bugs (reliability)
- Easier to refactor when adding new features (extensibility)



Lesson 3 cont’d: modularizing the construction of the

transition probability matrices

tpmatrix <- function(input_data, params)
rbind(
tp_sick(input_data, params),
tp_sicker(input_data, params),
c(@, @0, 1) # Death is an absorbing state
)
)

Transition probabilities from sick state

tp_sick <- function(input_data, params) {
beta <- params[c("sick sicker", "sick death")]
x <- make_x(input_data, beta[[1]])
mlogit probs(x, beta)

}

Transition probabilities from sick state
predicted from multinomial logit model
mlogit_probs <- function(x, beta) {

# General code to predict probabilities given
# coefficients from a multinomial regression

}

sick sicker death

[1,] 0.7553365 0.1585003 0.08616317
‘ [2,] ©.0000000 0.7441817 0.25581834
[3,] 0.0000000 0.0000000 1.00000000

Transition probabilities from sicker state

tp_sicker <- function(input_data, params) {
beta <- params[["sicker_death"]]
x <- make_x(input_data, beta)
rate <- exp(x %*% t(beta))
prob_death <- 1 - exp(-rate)
c(sick = @, sicker = 1 - prob_death, death = prob_death)

Create “input matrix” by selecting columns of
input data corresponding to parameters

make_x <- function(input_data, params) {
input_data[, "intercept"] <- 1 # Add intercept
as.matrix(input_data[, colnames(params)])

}



Ul wWwN R

Lesson 4: vectorize R code when feasible

e In our toy model with 5 treatment strategies, 10 patients, 20 (annual) model cycles,
and 1,000 PSA samples, there are 5 * 10 * 20 * 1,000 = 1,000,000 iterations

e Looping many times in pure R can be slow; the prior code runs in ~45 seconds

e We can speed up the code considerably (~2 seconds) by vectorizing (looping with
compiled code) with hesim

Using hesim: : tpmatrix()to precompute transition probabilities for every combination of ID variables

—

The GitHub repo for this presentation shows how the non-vectorized
code can be slightly tweaked to create transition matrices in a
vectorized manner. hesim will then implement a Markov chain
(written in C++) for each row in the table above

sick.sick sick.sicker sick.death sicker.sick sicker.sicker sicker.death death.sick death.sicker death.death sample strategy_id patient_id
0.7648088 0.1412419 0.09394930 (/] 0.6996350 0.3003650 0 0 1 1 1 1 1
0.7408574 0.1577365 0.10978398 0 0.6651783 0.3348217 0 0 1 2 1 1 2
0.7368429 ©0.1585800 0.11456486 (/] 0.6576189 0.3423811 (/] Q 1 3 1 1 3
0.7701127 ©0.1401260 0.08817304 (7] 0.7097757 0.2902243 Q Q 1 4 1 1 4
: 0.7429434  0.1572912 0.10733075 (/] 0.6691363 0.3308637 0 Q 1 5 1 1 5



Concluding thoughts

e Ris agood software tool for decision modeling but its important to following good
software practices

e |f done carefully, it can result in very transparent modeling; however, writing
transparent code is a lot of extra effort and neither academia, industry, or consulting
provide strong incentives for doing this

e There is a lot of potential to leverage open-source packages to make work more
efficient and less error prone; we should work together more

e We aren’t software engineers, but we should try to write code a little more like
them



