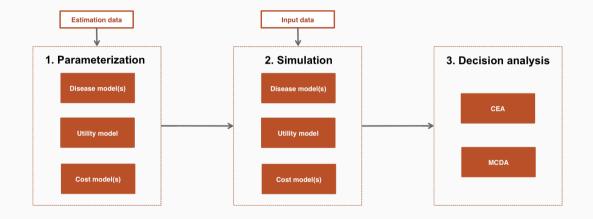
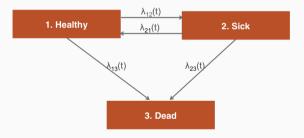
Multistate Semi-Markov Modeling in R


Devin Incerti

October 8, 2020

- Markov models are the most commonly used models for economic evaluation of health technologies
- Due to the Markov assumption, it is not straightforward (requires tunnel states) to incorporate time dependency
- Semi-Markov models can model time dependency in a very flexible manner but require individual patient simulation (IPS), which is computationally expensive
- The hesim package provides a general framework for simulating semi-Markov models very quickly and using them to perform cost-effectiveness analysis (CEA)


- A modular and computationally efficient R package for building simulation models for economic evaluation
- Supports both cohort and individual-level state transition models
- Parameterization by fitting a statistical model (e.g., multi-state model) or creating a custom parameter object
- Nearly all simulation code written in C++ under the hood

hesim integrates the entire modeling process

- Multi-state models can be used to parameterize a disease model
- Estimate hazard functions for each possible transition while properly accounting for censoring

Reversible illness death model

Statistical method	R package	Data
Parametric and spline models	flexsurv	Continuously observed pro-
		cesses
Non-parametric and semi-	mstate	Continuously observed pro-
parametric models		cesses
Exponential and piecewise ex-	msm	Panel data
ponential models		
Multi-state network meta-	rjags/rbugs/rstan	Summary data from RCTs
analysis		

Timescales

- Markov (i.e., "clock forward") implies that the hazard function is based on time since entering the initial state
- semi-Markov (i.e., "clock reset") implies that the hazard function is based on time since entering each state (i.e., the clock resets to 0 after each transition)

- IPS is required to simulate clock-reset models; can also be used for clock-forward models
- IPS works by simulating trajectories through the multi-state model with random number generation for a large number of patients
- Purpose is to compute expected values, which is operationalized by averaging over a large number of simulated patients

 Simulate times to all competing health state and transition to state with smallest sampled time

- Simulate times to all competing health state and transition to state with smallest sampled time
- In clock-reset models sampling can be performed using standard survival distributions; in a clock-forward model samples must be drawn from truncated distributions since time does not reset

- Simulate times to all competing health state and transition to state with smallest sampled time
- Let's consider a clock-reset simulation


- Simulate times to all competing health state and transition to state with smallest sampled time
- Let's consider a clock-reset simulation

- Simulate times to all competing health state and transition to state with smallest sampled time
- Let's consider a clock-reset simulation

3 Sick Healthy

- Simulate times to all competing health state and transition to state with smallest sampled time
- Let's consider a clock-reset simulation

- Simulate times to all competing health state and transition to state with smallest sampled time
- Let's consider a clock-reset simulation

Patient transitions from (i) healthy to sick at year 3 and (ii) sick to death at year 7

- hesim uses C++ to vectorize over treatment strategies, patients, and PSA iterations
- Simulation is very fast if efficient random number generation functions have been implemented in base R or a closed-form expression exists for the quantile function (all parametric distributions)
- If not (e.g., splines, fractional polynomials), simulation is slower. Must either:
 - Compute quantile function numerically and use inverse CDF method
 - Use discrete time approximation and sample from Bernoulli distribution

Simulating disease progression with hesim

##		sample	strategy_id	<pre>patient_id</pre>	grp_id	from	to	final	time_start	time_stop
##	1:	1	1	1	1	1	2	0	0.000000	0.4426233
##	2:	1	1	1	1	2	1	0	0.4426233	0.8347335
##	3:	1	1	1	1	1	3	1	0.8347335	10.1059473
##	4:	1	1	2	1	1	3	1	0.0000000	2.3750032
##	5:	1	1	3	1	1	2	0	0.0000000	1.0297401
##	6:	1	1	3	1	2	1	0	1.0297401	5.1060423

Simulating costs and QALYs

 Costs and QALYs are computed using the continuous time present value given a flow of state values

$$\sum_{m=1}^{M} \int_{t_m}^{t_m+1} z_{hm} e^{-rt} dt = \sum_{m=1}^{M} z_{hm} \left(\frac{e^{-rt_m} - e^{-rt_{m+1}}}{r} \right)$$

- The value for health state h, z_h, can be predicted from a statistical model or predefined; can vary by treatment strategy, patient, and/or time
- IPS is advantageous because state values can reset (e.g., costs in oncology can depend on time in progressed state due to changes in chemotherapy cycles)

##	state_id	mean	se
## 1:	1	1.0	0.0
## 2:	2	0.7	0.2

Simulating costs and QALYs and performing CEA with hesim

```
# Simulate costs and QALYs
econmod_cr$sim_qalys(dr = c(0,.03))
econmod_cr$sim_costs(dr = 0.03)
```

```
# Perform cost-effectiveness analysis
ce <- econmod_cr$summarize()
cea(ce, dr_qalys = .03, dr_costs = .03)
cea_pw(ce_sim, comparator = 1, dr_qalys = .03, dr_costs = .03)</pre>
```

- Comparison of \$sim_disease() to mstate::mssample() using Weibull 6-state model
 - 1,000 patients, 100 PSA iterations: hesim= .44 seconds, mstate = 34 minutes
 - 1,000 patients, 1,000 PSA iterations: hesim = 5 seconds, $\texttt{mstate} = \mathsf{N}/\mathsf{A}$
- Comparison of hesim individual-level (1,000 patients) to heemod cohort-level (60 annual cycles) when evaluating two treatment strategies with the time-inhomogeneous Markov model from the *Decision Modeling for Health Economic Evaluation* textbook
 - 1,000 PSA iterations: hesim = 9 seconds, $\texttt{heemod} = 85 \text{ seconds}^1$

 $^{^1\}mathsf{Run}$ time for an equivalent cohort model in <code>hesim</code> was ≈ 1 second.

Summary

- Semi-Markov models are flexible because they can track patient history; hazards, costs, and/or utility can all depend on time in state (not just model time)
- Although they can only be simulated in a general manner with IPS, hesim eliminates concerns about slow run times
- In addition to simulating disease progression, hesim can be used to (i) simulate cost/QALYs and (ii) perform CEA
- Some potential features to add: (i) function to update covariates during IPS, (ii) integration with multi-state network meta-analysis, and (iii) support for parallel computing
- Learn more and see new updates at https://hesim-dev.github.io/hesim/